IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006716.html
   My bibliography  Save this article

Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF

Author

Listed:
  • Zhang, Zhiqing
  • Zhong, Weihuang
  • Mao, Chengfang
  • Xu, Yuejiang
  • Lu, Kai
  • Ye, Yanshuai
  • Guan, Wei
  • Pan, Mingzhang
  • Tan, Dongli

Abstract

With the development of industrial level and the increasingly strict emission regulations, selective catalytic reduction (SCR) system is one of the important ways to control NOx emissions from diesel engines. In this study, the effects of intake pressure on pressure and NOx conversion efficiency before and after catalyst were investigated at different loads. In order to improve the SCR efficiency, a multi-objective prediction method based on FGRA-ANN/RF was developed for SCR systems, where the predicted output parameters (the front and back section temperatures of the catalyst, the pressure difference, and the instantaneous catalytic efficiency) and the decision variables (the engine operating parameters). Firstly, the sensitivity analysis of the multi-objective inputs obtained from the ETC condition experiments is performed by the fuzzy grey relation method (FGRA) to select the high sensitivity parameters. Then, the prediction was carried out by artificial neural network (ANN) as well as the improved random forest (RF). The experimental results showed that the evaluation index R2 of RF was generally greater than 0.92 and the improved random forest method had high accuracy and robustness. It is valuable for solving SCR industrial simulation and reducing the hysteresis of ammonia injection response.

Suggested Citation

  • Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006716
    DOI: 10.1016/j.energy.2024.130899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.