IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006546.html
   My bibliography  Save this article

Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems

Author

Listed:
  • Yao, Jiachi
  • Chang, Zhonghao
  • Han, Te
  • Tian, Jingpeng

Abstract

Battery energy storage systems (BESS) play a pivotal role in energy management, and the precise estimation of battery capacity is crucial for optimizing their performance and ensuring reliable power supply. Deep learning methodologies applied to battery capacity estimation have exhibited exemplary performance. However, deep learning methods necessitate supervised training with a significant volume of labeled data, presenting challenges for data collection in industrial scenarios. Moreover, a diverse range of battery types in industrial settings makes it difficult to develop capacity estimation models for different types of batteries from scratch. To address these issues, a semi-supervised adversarial deep learning (SADL) method is proposed for lithium-ion battery capacity estimation. Initially, a subset of labeled lithium-ion battery data, coupled with a subset of unlabeled data, is collected. Voltage and current data are then transformed into capacity increment features. Subsequently, an adversarial training strategy is employed, subjecting labeled and unlabeled data to adversarial training to enhance the performance of SADL. Finally, the effectiveness of the SADL method in estimating the capacity of other lithium-ion batteries is analysed. Experimental results demonstrate that the SADL method accurately estimates the capacity of various battery types, showcasing an RMSE error of approximately 2%, surpassing the performance of other methods. The proposed SADL method emerges as a promising solution for the precise estimation of lithium-ion battery capacity in BESS.

Suggested Citation

  • Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006546
    DOI: 10.1016/j.energy.2024.130882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.