IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006431.html
   My bibliography  Save this article

Experimental characterization of damage during geothermal production of hot dry rocks: Comprehensive effects of the damage-elastic deformation on conductivity evolution

Author

Listed:
  • Xu, Fuqiang
  • Shi, Yu
  • Song, Xianzhi
  • Wu, Wei
  • Song, Guofeng
  • Li, Shuang

Abstract

The development of hot dry rocks (HDRs) is of great significance to adjusting energy structure, alleviating energy shortage, reducing pollution, etc. Low-permeability granite is the predominant rock type in deep HDRs, making fractures the primary pathways for fluid circulation and heat extraction. The production of HDRs is significantly influenced by variable fracture conductivity, but current conductivity characterization primarily relies on the elastic deformation of the matrix, neglecting the impact of damage. Accordingly, we propose an experimental method and a supporting apparatus, which is used to unveil the conductivity evolution characteristics resulting from the comprehensive effects of damage and elastic deformation. The experimental results demonstrate that when subjected to confining force squeezing inward, the fracture conductivity experiences varying degrees of decrease compared to its initial state before the experiment. By utilizing the conductivity evolution rate as the evaluation criterion and conducting grey correlation analysis, it has been determined that temperature exerts the most significant influence on the conductivity evolution, followed by injection flow, and lastly, confining pressure. Moreover, rock particle types and production cycles also have different degrees of effect. After considering the comprehensive effects of damage-elastic deformation at the field-scale, the damage has a positive effect on conductivity enhancement. Our study provides a new approach for the characterization of fracture conductivity evolution for deep geothermal projects.

Suggested Citation

  • Xu, Fuqiang & Shi, Yu & Song, Xianzhi & Wu, Wei & Song, Guofeng & Li, Shuang, 2024. "Experimental characterization of damage during geothermal production of hot dry rocks: Comprehensive effects of the damage-elastic deformation on conductivity evolution," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006431
    DOI: 10.1016/j.energy.2024.130871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.