IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005954.html
   My bibliography  Save this article

Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance

Author

Listed:
  • Zhang, Ziyu
  • Huang, Peng
  • Bitsuamlak, Girma
  • Cao, Shuyang

Abstract

The present study utilizes high-fidelity large-eddy simulation (LES) to examine the upwind-hill impacts on wind-turbine wakes and power performance. Both the LES and Reynolds-Averaged Navier–Stokes (RANS) show good agreement with the experimental results of average velocity, whereas the LES exhibits great improvements in predicting turbulence characteristics. In turbine simulations, the wake half-width shows different behaviors in the hill and flat cases. The Gaussian and cosine distributions are good representations of the unskewed profiles of velocity deficit, although some discrepancies are seen around the wake edges. However, the spanwise profiles of velocity deficit become skewed in some hill cases. The non-zero pressure gradient (NZPG) model is employed to predict the velocity deficit in the wakes of a hilltop-sited turbine, and a generalized condition is proposed so that the NZPG model can work in the scenario where the pressure gradients at the turbine location or in its near wakes are not zero. Appropriately assigning initial values for the NZPG model is important for its successful use. The presence of the upwind hill has an adverse influence on the power output of the hilltop-sited turbine. The installation of wind turbines in the valley region near upwind hills is not recommended due to the limited wind-energy resources and intense turbulence levels.

Suggested Citation

  • Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005954
    DOI: 10.1016/j.energy.2024.130823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.