IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005942.html
   My bibliography  Save this article

Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem

Author

Listed:
  • Yang, Kuang
  • Liao, Haifan
  • Xu, Bo
  • Chen, Qiuxiang
  • Hou, Zhenghui
  • Wang, Haijun

Abstract

A dimensionally consistent physics-informed neural network, named DimNet, has been developed to predict dryout quality in helical coils. Central to its design is the automated and optimizable dimensionality reduction technique, leveraging the Buckingham Pi theorem, which transforms 11 dimensional physical quantities into 8 dimensionless groups. Rigorous 5-fold cross-validation and cross-fluid testing affirm its performance, with an mean absolute error of 0.0540 and 0.198, respectively. The strategic incorporation of noise during training elucidates pronounced improvements, accentuating the model's adaptability. In comparison to three other neural network architectures, DimNet consistently displays superior accuracy. Ablation experiments have underscored the efficacy of each module within the model's design. Ultimately, while DimNet presents as a promising tool for enhancing thermal efficiency in helical-coiled steam generators, its design principles also shed light on the broader potential and versatility of dimensionally consistent neural architectures.

Suggested Citation

  • Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005942
    DOI: 10.1016/j.energy.2024.130822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.