IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005772.html
   My bibliography  Save this article

Open adsorption system for atmospheric CO2 capture: Scaling and sensitivity analysis

Author

Listed:
  • Liu, Xuetao
  • Saren, Sagar
  • Chen, Haonan
  • Jeong, Ji Hwan
  • Li, Minxia
  • Dang, Chaobin
  • Miyazaki, Takahiko
  • Thu, Kyaw

Abstract

Open adsorption process of gas mixtures involves complex heat and mass transfer mechanisms. Understanding of the physical mechanisms and their impacts on the adsorption process from gas mixtures is vital. In this study, a detailed analysis of an open CO2 adsorption from CO2/N2 mixtures using zeolite 13X-APG was investigated. Key physical mechanisms (unsteady, diffusive, convective, and component source, etc.) involved were scrutinized, and their order of magnitudes relative to the system energy complex were determined. The influences of these physical mechanisms on the equilibrium and dynamic nature throughout the capture were quantified. The validated computational fluid dynamics (CFD) simulations for the same adsorption domain were carried out to verify the rationality of the scaling method. The adsorption time, tad; the maximum average temperature, T‾max; CO2 removal rate, Rre,CO2; equilibrium pressure drop, ΔPeq on different scale parameters and their sensitivity were investigated. The maximum relative sensitivity to porosity was found to be −0.945, 0.0235, −0.357, and −5.33 for tad, T‾max, Rre,CO2 and ΔPeq, respectively. It is observed that heat transfer by the conduction mechanism inside the bed significantly influences all scale parameters, except for ΔPeq. This work will contribute to a better understanding of the atmospheric CO2 adsorption and provide guidance for the design optimization.

Suggested Citation

  • Liu, Xuetao & Saren, Sagar & Chen, Haonan & Jeong, Ji Hwan & Li, Minxia & Dang, Chaobin & Miyazaki, Takahiko & Thu, Kyaw, 2024. "Open adsorption system for atmospheric CO2 capture: Scaling and sensitivity analysis," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005772
    DOI: 10.1016/j.energy.2024.130805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.