IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005206.html
   My bibliography  Save this article

Thermal analysis of a bifacial vacuum-based solar thermal collector

Author

Listed:
  • Radwan, Ali
  • Abo-Zahhad, Essam M.
  • El-Sharkawy, Ibrahim I.
  • Said, Zafar
  • Abdelrehim, Osama
  • Memon, Saim
  • Cheng, Ping
  • Soliman, Ahmed Saad

Abstract

In this study, thermal analysis of a vacuum-based bifacial solar thermal collector is conducted. This solar collector is expected to capture the solar radiation from both front and rear sides. One advantage of this collector is that it can work effectively in restricted positions where it should be installed in different positions such as vertically in narrow areas as road wind barriers. The effect of fluid inlet velocity and collector installation position, optimal tilted or vertical, on the performance of the proposed collector as one factor at a time is computationally evaluated. Further, response surface methodology is applied to evaluate the most significant factors affecting the operation of the collector and evaluating the interaction between different factors on the collector performance. The results showed that the proposed collector design still works effectively even for a vertical position of restricted areas. Further, the maximum absorber temperature is significantly increased by increasing the front radiation, water inlet temperature, and rear radiation ratio. Conversely, increasing the inlet velocity also significantly decreases the maximum absorber temperature. Furthermore, the effect of wind speed is statistically insignificant on the maximum absorber temperature. The heat loss from the proposed solar collector reduced by 78.5 % with increasing the coolant velocity from 5 mm/s to 30 mm/s.

Suggested Citation

  • Radwan, Ali & Abo-Zahhad, Essam M. & El-Sharkawy, Ibrahim I. & Said, Zafar & Abdelrehim, Osama & Memon, Saim & Cheng, Ping & Soliman, Ahmed Saad, 2024. "Thermal analysis of a bifacial vacuum-based solar thermal collector," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005206
    DOI: 10.1016/j.energy.2024.130748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.