IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224004079.html
   My bibliography  Save this article

Energy recovery and clean water remediation using antibiofouling polysaccharide coated PAN hollow fiber membrane obtained via green route synthesis

Author

Listed:
  • Renita, A. Annam
  • Lakshmi, D. Shanthana
  • Maheswari, P.
  • Saxena, Mayank
  • Kumar, J. Aravind
  • Vigneswaran, V.S.

Abstract

Biofouling is an important biological constrain in the water treatment process, and the control or management strategies using green principles have gained recent attention. Antibiofouling agents based on the biological source are now extensively studied due to their high efficacy and are environmentally friendly. In this present study, Poly Acrylo Nitrile (PAN)/Ulvan hollow fibre membranes of four different modules were fabricated for water treatment studies by testing against B. subtilis and E. coli along with separation efficiency studies on proteins such as albumin, pepsin, and clay. Ulvan (Ulv), green seaweed sulfated polysaccharide extracted from Ulva fasciata, was coated on PAN hollow fibres, fabricated using a wet-spinning process. Ulvan was dip-coated on membrane surface followed by cross-linking and resultant changes in terms of performance and morphology. PAN/Ulv hollow fibre membranes were examined for the pure water flux and protein separation analysis to analyse the membrane efficiency. SEM was used to analyse the membrane structure and ATR- FTIR for the determination of functional groups. Ulvan coated (310 C) hollow fibre membrane showed better performance than the other three membranes with a flux of 398.1 L m−2 h−1. Higher sample concentration of suspended solids paved simpler route for enhanced COD sequestration efficacy. Pepsin, albumin, and clay particles were rejected by the 310C Ulvan adorned membranes at rates greater than 80%. By incrementing suspended particles beyond 3200 mg/L, the greatest power recovery was reduced that portrays an adverse influence of bio-fouling process on membrane operation. Experimental results demonstrated that synthesised 310 C membrane possessed better separation performance and antifouling characteristics for aquatic water systems.

Suggested Citation

  • Renita, A. Annam & Lakshmi, D. Shanthana & Maheswari, P. & Saxena, Mayank & Kumar, J. Aravind & Vigneswaran, V.S., 2024. "Energy recovery and clean water remediation using antibiofouling polysaccharide coated PAN hollow fiber membrane obtained via green route synthesis," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004079
    DOI: 10.1016/j.energy.2024.130635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.