IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004511.html
   My bibliography  Save this article

Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies

Author

Listed:
  • Wang, Chuyao
  • Ji, Jie
  • Song, Zhiying
  • Ke, Wei

Abstract

Implementing suitable operation strategies significantly enhances the overall performance of the energy network of solar buildings. Previous studies predominantly concentrated on dispatching energy from standalone photovoltaic or photothermal modules within buildings. The photovoltaic/thermal (PV/T) modules have garnered attention due to their higher energy efficiency. However, the investigations targeting the operation strategies of PV/T modules in building remain scarce. To fill this research gap, this study scrutinized the maximum self-consumption (MSC), time-of-use (TOU), and optimization-based (OPT) strategies within a building energy system integrated with PV/T modules. The investigation encompassed an analysis of overall performance, parameter sensitivity, and optimal energy storage capacity. The main results were: (1) The OPT strategy displayed superior flexibility and lower operation costs compared to other strategies but exhibited lower energy utilization efficiency and greater grid impact. (2) The MSC strategy demonstrated lower sensitivity concerning battery power and charge states when contrasted with other strategies. (3) The optimal capacities for battery and water tank configurations for the MSC, TOU, and OPT strategies were identified as 4 kWh/200 L, 2.5 kWh/200 L, and 4.5 kWh/100 L, respectively. This research aims to provide reference and insights for planning the integration of PV/T modules into building energy systems.

Suggested Citation

  • Wang, Chuyao & Ji, Jie & Song, Zhiying & Ke, Wei, 2024. "Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004511
    DOI: 10.1016/j.energy.2024.130679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.