IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002561.html
   My bibliography  Save this article

Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor

Author

Listed:
  • Li, Xianzhe
  • Liu, Mengnan
  • Hu, Chenming
  • Yan, Xianghai
  • Zhao, Sixia
  • Zhang, Mingzhu
  • Xu, Liyou

Abstract

Fuel cell distributed drive electric tractors (FCDET) are one of the necessary means to achieve truly green agriculture. However, low traction efficiency, poor control coordination, and excessive energy consumption are the main reasons hindering the industrialization of FCDET. This paper proposed a parametric collaborative optimization design method and innovative verification system that considers the drive system and energy system. Based on the tractor plowing operating conditions, a 7-DOF coupled dynamics model of the distributed drive system and a tire-soil interaction model were established, and the key component selection and parameter matching were completed. On the drive system optimization level, the front and rear wheelside transmission ratios are optimized based on a multi-island genetic algorithm (MIGA). On the energy system optimization level, the globally optimal power distribution ratio is found based on the dynamic programming algorithm (DP). A complete experimental prototype verification system is constructed based on the MATLAB/Simulink-NI PXI joint simulation platform, physical prototype test bench, and real vehicle multi-index test platform. The results show that the average efficiencies of the optimized drive and energy system are increased by 0.38 % and 3.82 %, the total energy consumption (total hydrogen consumption) is reduced by 25.40 % and 15.39 %, respectively. The maximum fault-free operating time is 5.5h, the average traction power is 21.07 kW, and the average traction force is 10610 N in the all-wheel drive mode. The experimental results fully demonstrate that the electric tractor with the fuel cell distributed drive system as the core can meet the verification of multiple indicators. This study can provide a new theoretical basis and technical verification method for the optimal design and system control of fuel cell distributed drive electric tractors.

Suggested Citation

  • Li, Xianzhe & Liu, Mengnan & Hu, Chenming & Yan, Xianghai & Zhao, Sixia & Zhang, Mingzhu & Xu, Liyou, 2024. "Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002561
    DOI: 10.1016/j.energy.2024.130485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.