IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002172.html
   My bibliography  Save this article

Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs

Author

Listed:
  • Gong, Guangjun
  • Yang, Mingjun
  • Pang, Weixin
  • Zheng, Jia-nan
  • Song, Yongchen

Abstract

Gas permeability and the depressurization path are decisive factors affecting the efficiency of gas hydrate reservoir exploitation. However, there was a lack of quantitative studies on the gas permeability and dynamic optimization of real-time depressurization paths under different in-situ conditions. Therefore, hydrate-bearing cores within the core holder were remolded using South Sea clay under different in-situ conditions. Then, the gas permeability was continuously measured using a constant flow rate. Next, a gas permeability model coupling effective pressure, hydrate saturation, and absolute permeability were established. It was used to predict the gas permeability under different in situ conditions, with deviations mainly in the range of 1–2 %. In addition, the optimum outlet pressure and positive outlet pressure range during depressurization under different in-situ conditions were proposed. The real-time gas flow rate of the optimal depressurization path was larger than other depressurization paths. Also, the logic reasoning process for real-time optimal outlet pressure and positive outlet pressure range was given. Finally, the inlet pressure and the optimum outlet pressure were also accurately predicted. None of the predicted values deviated by more than 4 %. The dynamic optimization of the outlet pressure behavior during depressurization can provide some scientific guidance for hydrate development and utilization.

Suggested Citation

  • Gong, Guangjun & Yang, Mingjun & Pang, Weixin & Zheng, Jia-nan & Song, Yongchen, 2024. "Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002172
    DOI: 10.1016/j.energy.2024.130446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.