IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000951.html
   My bibliography  Save this article

Study on energy conversion efficiency of wave generation in shake plate mode

Author

Listed:
  • Duan, Derong
  • Lin, Xiangyang
  • Wang, Muhao
  • Liu, Xia
  • Gao, Changqing
  • Zhang, Hui
  • Yang, Xuefeng

Abstract

In recent years, increasing attention has been paid to factors affecting the efficiency of converting wave energy from kinetic energy using shake plates. This research was based on the volume of fluid method to evaluate the energy conversion efficiency of waves generated in the shake plate mode. The effects of different shake plate parameters and water depths on the kinetic energy conversion efficiency were studied, and the results agreed well with experimental data. Results indicated that the angular velocity of the shake plate had the highest influence on kinetic energy conversion efficiency. In the range of ωx to 1.8ωx, the maximum kinetic energy conversion efficiency was 52.1 %. The influence of the oscillation amplitude of the shake plate on the kinetic energy conversion rate was relatively low. As a result, the kinetic energy conversion efficiency remained at approximately 18.10 % even with changes in oscillation amplitude. The kinetic energy conversion efficiency of the shake plate increased with an increase in water depth, with maximum increase 87.39 % seen between 0.15 and 0.2 m. Our research is expected to serve as a reference for the implementation of efficient wave energy generation systems worldwide.

Suggested Citation

  • Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000951
    DOI: 10.1016/j.energy.2024.130324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.