IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034771.html
   My bibliography  Save this article

Spatial evolution of pore and fracture structures in coal under unloading confining pressure: A stratified nuclear magnetic resonance approach

Author

Listed:
  • Xie, Senlin
  • Zhou, Hongwei
  • Jia, Wenhao
  • Gu, Yongsheng
  • Cao, Yanpeng
  • Liu, Zelin

Abstract

The inherent spatial complexity and strong heterogeneity characterise the pore and fracture structures (PFS) in coal. Understanding the spatial evolution of PFS in coal under unloading confining pressure is crucial for ensuring the safety of coal mining operations. In this study, the stratified nuclear magnetic resonance (NMR) technique and a triaxial mechanical loading system were combined to realise real-time observation of the spatial evolution of PFS in coal during the unloading confining pressure process. A conceptual model depicting the spatial evolution of PFS in coal under unloading confining pressure was formulated. Based on our experimental findings, the mesoscopic mechanical behaviour of coal subjected to unloading confining pressure was simulated using PFC 2D. Our research reveals that throughout the unloading confining pressure process, the PFS within coal samples simultaneously exhibits characteristics of both compacted and fractured states, with mutual transformation occurring in the adsorption and seepage pores. A reduction in confining pressure results in a notable escalation of observed damage within the coal samples and intensified development of PFS. Furthermore, our numerical simulation results closely align with NMR test results, providing additional validation to our findings.

Suggested Citation

  • Xie, Senlin & Zhou, Hongwei & Jia, Wenhao & Gu, Yongsheng & Cao, Yanpeng & Liu, Zelin, 2024. "Spatial evolution of pore and fracture structures in coal under unloading confining pressure: A stratified nuclear magnetic resonance approach," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034771
    DOI: 10.1016/j.energy.2023.130083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.