IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034667.html
   My bibliography  Save this article

Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms

Author

Listed:
  • Wang, Chongyao
  • Wang, Xin
  • Wang, Huaiyu
  • Xu, Yonghong
  • Ge, Yunshan
  • Tan, Jianwei
  • Hao, Lijun
  • Wang, Yachao
  • Zhang, Mengzhu
  • Li, Ruonan

Abstract

Organic Rankine cycle (ORC) can improve engine power by recovering exhaust energy. This paper co-optimizes the engine-ORC combined system's power and NOx emission, with decision variables of the engine's excess air ratio, spark advance angle, as well as ORC's pump and expander speeds. Firstly, a simulation model of the combined system is established and validated. Then, the initial dataset is generated by the D-optimum Latin hypercube method and simulation model. The artificial neural network (ANN) prediction models of NOx emission and power are established based on these datasets. Finally, the co-optimization is conducted using the ANN prediction model and genetic algorithm. Focusing on maximizing the combined system's power results in an 18.30 % increase in power, and a significant reduction in brake-specific fuel consumption (BSFC) and brake-specific NOx (BSNOx) by 10.10 % and 71.30 %, respectively, compared to the unoptimized basis. Targeting the lowest BSNOx leads to a limited 1.20 % increase in power output; however, it results in a 19.50 % increase in BSFC. When optimizing for both system output and BSNOx, the output remains 13.5 % above the unoptimized basis. Meanwhile, up to 89.8 % of BSNOx can be eliminated with negligible deterioration in BSFC. This study could be used for engine performance enhancements.

Suggested Citation

  • Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034667
    DOI: 10.1016/j.energy.2023.130072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.