IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034643.html
   My bibliography  Save this article

Effects of excess oxidizer coefficient on RBCC engine performance in ejector mode: A theoretical investigation

Author

Listed:
  • Chen, Jikai
  • Sun, Mingbo
  • Li, Peibo
  • An, Bin
  • Jiaoru, Wang
  • Li, Menglei

Abstract

This study investigates the effects of the primary rocket’s excess oxidizer coefficient (EOC) on the performance of a kerosene-fueled rocket-based combined cycle (RBCC) engine operating in ejector mode using the diffuser and afterburning (DAB) cycle. Employing complete mixing and chemical equilibrium assumptions, a quasi-one-dimensional model is developed to simulate combustion processes in the primary rocket chamber, mixer, and afterburner. Experimental data and full three-dimensional simulation validate the model’s accuracy. Results indicate that increasing EOC mitigates thermal choking effects at the mixer exit, decreasing mixing and Rayleigh losses, enhancing the entrainment ratio, and providing more oxygen for secondary combustion. However, the gas mixture’s compression ratio and total temperature decrease, rendering secondary combustion more susceptible to thermal choking in a constant cross-sectional afterburner. As the flight Mach number increases from 0.8 to 2.5, the optimum EOC for maximum specific impulse shifts from 0.725 to 2.375. While the optimum EOC for maximum thrust remains consistently around 2.0. The findings underscore the necessity of a higher EOC to fully unlock the DAB cycle’s thrust augmentation potential.

Suggested Citation

  • Chen, Jikai & Sun, Mingbo & Li, Peibo & An, Bin & Jiaoru, Wang & Li, Menglei, 2024. "Effects of excess oxidizer coefficient on RBCC engine performance in ejector mode: A theoretical investigation," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034643
    DOI: 10.1016/j.energy.2023.130070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.