IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics036054422303462x.html
   My bibliography  Save this article

Power and efficiency improvement of SI engine fueled with boosted producer gas-methane blends and LIVC-miller cycle strategy: Thermodynamic and optimization studies

Author

Listed:
  • Jena, Priyaranjan
  • Tirkey, Jeewan Vachan

Abstract

An appealing alternative solution for lowering both reliance on power grid and pollution is by adopting decentralized power generation using gasifier-engine integrated systems. However, the utilization of gasification-derived producer gas (PG) leads to low engine power output and efficiency as compared to conventional fuels. This pertains to its low Calorific value(CV) and low flame-speed. Therefore, this simulation study aims to simulate and investigate the improvements in these parameters by inspecting various boosted-intake pressures and blends of high-CV methane with PG as inputs along with the implementation of Late inlet valve close(LIVC)-Miller cycle strategy on a 1500 RPM Dual-fuel(DF) SI engine model. Quasi-dimensional thermodynamic modelling (QDTM) was applied to simulate this performance and emission investigation by considering Sewage sludge-based PG (SSPG) as the PG variant. Best operational input settings were found using the Response Surface Methodology(RSM)-based multi-objective optimization. These optimal inputs were 3 bars of Pressure at intake valve closure (PIVC), 76.94 % SSPG-blend, and 77.32⁰ (ABDC) LIVC. The responses were correspondingly predicted as 40.46 % ITE, 21.35 bars IMEP, 16.8 kW BP, 20.04 bars BMEP, 9.48 MJ/kWh BSEC, with 0.08 V% CO and 3094 ppm NO emissions. Finally, with the ANOVA-based analysis, a 0.712 composite desirability was achieved with 95 % confidence level.

Suggested Citation

  • Jena, Priyaranjan & Tirkey, Jeewan Vachan, 2024. "Power and efficiency improvement of SI engine fueled with boosted producer gas-methane blends and LIVC-miller cycle strategy: Thermodynamic and optimization studies," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303462x
    DOI: 10.1016/j.energy.2023.130068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303462X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303462x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.