IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034540.html
   My bibliography  Save this article

The improvements of a diesel engine fueled with renewable and sustainable diesel/n-butanol/polyoxymethylene dimethyl ethers blended fuels at high altitudes

Author

Listed:
  • Ma, Wenyao
  • Gao, Sheng
  • Liu, Hui
  • Li, Dongmei

Abstract

Atmospheric conditions at high altitudes deteriorate combustion in the cylinder of compression ignition (CI) engines, severely degrading engine performance and increasing soot emissions. The use of oxygenated fuels as an alternative fuel to diesel is an effective solution to improve performance and reduce emissions of highland CI engines. Before optimizing a highland CI engine, it is necessary to determine the law of influence of oxygenated fuels on the performance and emission characteristics of the engines. This paper focuses on the effect of diesel/n-butanol/polyformaldehyde dimethyl ether blends on the combustion, performance, and emission characteristics of a CI engine at different simulated altitudes (0 m, 2000 m, 3000 m, and 4000 m). First, a three-dimensional computational fluid dynamics (3D-CFD) simulation model was developed and validated by experimental results. Second, the 3D-CFD model coupled with a chemical kinetic mechanism including 164 species and 643 reactions was used to simulate the combustion process in the cylinder under different operating conditions. The results showed that the high-altitude environment increased the cylinder temperature, peak heat release rate, ignition delay, soot emissions, HC emissions, and brake specific fuel consumption, and reduced BTE, and NOx emissions of the CI engine compared with the plains. At the same altitude, the use of n-butanol and PODE3 provided oxygen for in-cylinder combustion, which somewhat promoted more complete combustion in the cylinder, reduced HC and soot emissions and increased BTE. Although the use of oxygenated fuels in highland CI engines elevated NOx emissions, the problem could be solved by methods such as LTC and SCR. Overall, n-butanol and PODE3 are promising alternative fuels for highland CI engines, mitigating to some extent the problems of higher soot and HC emissions and lower BTE associated with high-altitude environments.

Suggested Citation

  • Ma, Wenyao & Gao, Sheng & Liu, Hui & Li, Dongmei, 2024. "The improvements of a diesel engine fueled with renewable and sustainable diesel/n-butanol/polyoxymethylene dimethyl ethers blended fuels at high altitudes," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034540
    DOI: 10.1016/j.energy.2023.130060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.