IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034448.html
   My bibliography  Save this article

A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm

Author

Listed:
  • Huang, Mengqi
  • Peng, Changhong
  • DU, Zhengyu
  • Liu, Yu

Abstract

Heat pipe cooled reactors are ideal for use in remote or isolated locations as dependable, small-scale power sources, thanks to their excellent design characteristics. To tackle real-time changes in power demand within a dynamic environment, this research proposes a decision-making strategy for regulating the power of heat pipe cooled reactors. The strategy is founded on a hybrid data-driven optimization algorithm and deep learning, enabling the attainment of safe and efficient control of heat pipe cooled reactors under specified power requirements. Initially, a power forecast model founded on artificial neural networks for heat pipe cooled reactors is established. Then, an appraisal standard for power regulation arrangements, combining reactor safety and operational effectiveness, is developed based on the utility theory. Finally, this study introduces a hybrid data-driven optimization algorithm that efficiently identifies the power regulation scheme with the greatest utility for given power demands. The proposed technique's effectiveness was demonstrated by selecting the power regulation process of the MegaPower heat pipe cooled reactor as an example. The results indicate that the strategy can make steady, accurate, and near-optimal power regulation decisions for any power demand within 20 s.

Suggested Citation

  • Huang, Mengqi & Peng, Changhong & DU, Zhengyu & Liu, Yu, 2024. "A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034448
    DOI: 10.1016/j.energy.2023.130050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.