IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034345.html
   My bibliography  Save this article

Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels

Author

Listed:
  • Heidari, Sahar
  • Poshtiri, Amin Haghighi
  • Gilvaei, Zoleikha Moghtader

Abstract

In this study, researchers investigated the efficacy of natural cooling in a residential building employing a horizontal windcatcher alongside a direct evaporative cooling system featuring a cross-flow pattern. ANSYS Fluent was used to model the three-dimensional airflow, while MATLAB measured the system's thermal performance. The study assessed thermal comfort and natural ventilation in accordance with the Adaptive Thermal Comfort Standard (ATCS) and ISO/EN7730 Standard. The impact of environmental conditions and window aperture on the hybrid system's functionality was scrutinized, culminating in design guidelines dictating the acceptable range of window openings to ensure compliance with thermal comfort conditions. The passive system demonstrated the capability to maintain thermal comfort within the test building under a maximum cooling load of 12,000 W (ATCS) and 6000 W (ISO/EN7730). Moreover, the natural cooling system decreased hourly electricity consumption during hot seasons in Tehran, Iran, by 0.0155 (kW/m2) compared to split air conditioners and 0.00087 (kW/m2) compared to evaporative coolers. The study also investigated the influence of neighboring buildings positioned at specific distances relative to the test building on the system's performance. Furthermore, adopting the suggested horizontal windcatcher instead of conventional vertical windcatchers resulted in a 50 % reduction in energy consumption.

Suggested Citation

  • Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034345
    DOI: 10.1016/j.energy.2023.130040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.