IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034333.html
   My bibliography  Save this article

Numerical investigation of the effects of different influencing factors on thermal performance of naturally ventilated roof

Author

Listed:
  • Wang, Haitao
  • Wei, Jiahua
  • Guo, Chengzhou
  • Yang, Liu
  • Wang, Zuyuan

Abstract

Ventilated roofs can improve thermal performance and reduce the energy consumption of building roofs. In this study, the optimal design parameters and adaptability of naturally ventilated roofs were determined through numerical investigations of the effects of different influencing factors on their thermal performance. A three-field coupling numerical simulation method considering temperature, flow, and solar radiation fields was used to improve simulation accuracy. The research results show that the optimal air gap layer thickness of a naturally ventilated roof increases with increasing roof length, which has not been considered in previous studies. The peak interior surface temperature of the ventilated roof increases with increasing outdoor atmospheric pressure. Ventilated roofs with a 30°–40° slope have a stronger stack effect and can better discharge solar heat gains when compared to roofs with other slopes. Interior surface temperature is reduced when phase change materials is set in the upper rather than the lower roof during summer. Phase change materials should be set in the upper roof to save energy. Small damage holes in the upper roof don't apparently affect the ventilated roof thermal performance. The findings of this study can guide optimization design and help evaluate the energy-saving effects of naturally ventilated roofs.

Suggested Citation

  • Wang, Haitao & Wei, Jiahua & Guo, Chengzhou & Yang, Liu & Wang, Zuyuan, 2024. "Numerical investigation of the effects of different influencing factors on thermal performance of naturally ventilated roof," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034333
    DOI: 10.1016/j.energy.2023.130039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.