IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034254.html
   My bibliography  Save this article

Microscopic pyrolysis mechanisms of superfine pulverized coal based on TG-FTIR-MS and ReaxFF MD study

Author

Listed:
  • Liu, Jiaxun
  • Yang, Xiuchao
  • Liu, Jianguo
  • Jiang, Xiumin

Abstract

Current studies on coal pyrolysis characteristics mainly focus on macroscopic aspects. Here, the structural properties of coal residues were well characterized based on HRTEM, XPS, and 13C NMR etc., and the macromolecule models were constructed. Combining the small molecule compositions of extracts and the macromolecule models of residues, the multi-component models of raw coals with different particle sizes were successfully constructed. Thus, the microscopic pyrolysis mechanisms of raw coals were obtained by combining TG-MS-FTIR and ReaxFF MD analysis. More importantly, the evolution of chemical bonds and carbon-containing products was discussed. The effect of particle size on microscopic pyrolysis characteristics was focused on. The results show that for smaller particles, the abundant alkylated aromatic and aromatic bridgehead carbon enhances the pyrolysis process. During the primary thermal depolymerization, the conversion of C100+ to C14–C40 and C41–C100 and the generation of pyrolysis gases collectively govern the thermochemical process. For the secondary thermal depolymerization, the release of massive pyrolysis gases is dominant, and most oxygen-containing intermediate groups transform into CO and CO2. In the thermal polymerization stage, the C100+ mainly evolves into C41–C100 and C14–C40, accompanied by the evolution of substantial H2. The microscopic pyrolysis mechanisms shed light on further developing new low-NOx combustion technologies.

Suggested Citation

  • Liu, Jiaxun & Yang, Xiuchao & Liu, Jianguo & Jiang, Xiumin, 2024. "Microscopic pyrolysis mechanisms of superfine pulverized coal based on TG-FTIR-MS and ReaxFF MD study," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034254
    DOI: 10.1016/j.energy.2023.130031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.