IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034217.html
   My bibliography  Save this article

Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect

Author

Listed:
  • Song, Yilei
  • Song, Zhaojie
  • Chen, Zhangxin
  • Zhang, Lichao
  • Zhang, Yunfei
  • Feng, Dong
  • Wu, Zhengbin
  • Wu, Jiapeng

Abstract

Shale reservoirs are featured by widely distributed micro-scale fractures and nano-scale pores. The phase behavior of reservoir fluids in these complex environments remains uncertain. Hence, an efficient model is developed to investigate the fluid phase behavior in multi-scale shale reservoirs based on a pore-size-dependent equation of state. The porous space is discretized into specific sizes of nanopores and fractures regions. Phase equilibrium calculations for pure components, binary mixtures and multi-component shale oils show that adsorption and critical properties shifts display opposite effects on a fluid distribution, and the shifts in the critical properties are the main reason for more lighter components present in nanopores. The nano-confinement effect enhances the ability of CO2 to enter nanopores. An innovative multi-scale model of partial equilibrium is developed to explore changes in fluid properties during pressure depletion. The results reveal that gas appears in the fracture region, while the confined fluids within nanopores are always kept in the oil phase. Lighter components within nanopores are rapidly released as pressure drops. However, the content of heavier components within nanopores gradually decreases if the pressure stabilizes for a while, meaning that a slow pressure drop is more conducive to the recovery of shale oil from nanopores.

Suggested Citation

  • Song, Yilei & Song, Zhaojie & Chen, Zhangxin & Zhang, Lichao & Zhang, Yunfei & Feng, Dong & Wu, Zhengbin & Wu, Jiapeng, 2024. "Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034217
    DOI: 10.1016/j.energy.2023.130027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.