IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033133.html
   My bibliography  Save this article

Assessment of hydrogen and diethyl ether enrichment on CI engine operating with binary blend of jatropha and camphor oil using response surface methodology

Author

Listed:
  • Gurusamy, Manikandaraja
  • Subramaniyan, Malarmannan
  • Subramaniyan, Balaji

Abstract

This paper aims to study the compression ignition dual fuel engine's characteristics operating with blends of jatropha and camphor oil along with hydrogen enrichment. The fuel blend was prepared by mixing 30 % Jatropha oil with 70 % Camphor oil on volume basics. Hydrogen gas was inducted in the air intake manifold at 4 and 8 LPM. Diethyl ether was added at 10 and 20 % to the binary blend of Jatropha oil and camphor oil at volume percentage to improve engine characteristics at 8 lpm. Matrix 1 was prepared using a central composite design for the input of load (50 %–100 %) and hydrogen induction up to 8 lpm. Matrix 2 was prepared for 8 lpm hydrogen induction by varying the diethyl ether concentration up to 20 %. The output response was analyzed using response surface methodology and a statistical model was found significant for the confidence level of 1 %. The experimental results show that the addition of 8 LPM of hydrogen in the air intake manifold has increased the brake thermal efficiency with maximum efficiency increment up to 33.7 % at 100 % load condition. Similarly, with hydrogen induction the maximum value for in-cylinder peak pressure (ICPmax), heat release rate (HRR), exergy efficiency (EE), and sustainability index (SI) are 76.5 Bar, 53.9 J/⸰CA, 43 % and 1.73 respectively. The reduction in emission of CO, smoke, HC and CO2 was noted with the penalty of NO emissions. Further, DEE addition by 20 % along with 8 LPM Hydrogen induction reduces the brake thermal efficiency significantly and a similar trend was noted with emissions such as CO, HC and NO and the smoke opacity. However, when 10 % DEE was added with 8 LPM of hydrogen there was an increase in BTE showing a maximum value of 34.2 %.

Suggested Citation

  • Gurusamy, Manikandaraja & Subramaniyan, Malarmannan & Subramaniyan, Balaji, 2024. "Assessment of hydrogen and diethyl ether enrichment on CI engine operating with binary blend of jatropha and camphor oil using response surface methodology," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033133
    DOI: 10.1016/j.energy.2023.129919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.