IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics036054422303205x.html
   My bibliography  Save this article

Improved Pelican optimization algorithm for solving load dispatch problems

Author

Listed:
  • SeyedGarmroudi, SeyedDavoud
  • Kayakutlu, Gulgun
  • Kayalica, M. Ozgur
  • Çolak, Üner

Abstract

The Pelican Optimization Algorithm (POA) is a newly developed algorithm inspired by the hunting behavior of pelicans. Despite its fast convergence rate, it suffers from premature convergence, the imbalance between exploration and exploitation, and lack of population diversity. In this work, an improved POA is proposed to attenuate these shortcomings. IPOA benefits from three motion strategies and predefined knowledge-sharing factors that better describe the stochastic hunting behavior of pelicans, as well as a modified dimension-learning-based hunting (DHL) behavior to retain diversity. To test the effectiveness of these improvements, it was used to solve 23 benchmark functions, including unimodal, multimodal, and 6 composite functions (CEC 2017). To evaluate performance, it was applied to solve economic and combined economic emission load dispatch problems that play a critical role in real-world power system planning and operation while considering environmental impacts. This experiment includes 6, 10, 11, 40, 140, 160, and 320 generating units with nonconvex and non-smooth objective functions. The comparison is performed for benchmark functions and the optimal dispatch problems. The results confirm the competitive and almost superior performance of the IPOA in several cases, which proves the applicability and efficiency of the proposed approach in solving real-world problems.

Suggested Citation

  • SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303205x
    DOI: 10.1016/j.energy.2023.129811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303205X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303205x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.