IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223033042.html
   My bibliography  Save this article

Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene

Author

Listed:
  • Xia, Wei
  • Wang, Xue
  • Li, Shuangshuang
  • Jiang, Zhenhua
  • Chen, Kun
  • Liu, Dong

Abstract

Bioethanol to propene is a promising avenue to produce propene by non-fossil routes. In this study, the ethanol conversion on metal-modified ZSM-5 catalysts is systematically investigated under catalyst preparation conditions and reaction parameters. Among all metal modified ZSM-5, Zr modification significantly improves the propene selectivity and catalyst durability. On the Zr/ZSM-5 catalyst (Zr/Al molar ratio is 0.4, reaction temperature 500 °C, and contact time 0.005 g⋅min/mL), the maximum yield of propene reaches up to 32.5 %, which can be maintained above 20.0 % within 20 h. Zr modification changes the acidity and electronic structure of the active sites, improves the adsorption stability of the reactant ethanol on Zr/ZSM-5, facilitates easier desorption of the product propene, benefiting propene production. Moreover, Zr modification is found to increase the activation energy of the ethene protonation, inhibit the ethene dimerization reaction, further inhibits the carbon deposition, and extends the lifetime of ZSM-5. In addition to its synergistic and effective role in the conversion of ethanol to propene, the Zr modified catalyst also exhibits high selectivity and stability in the conversion of bioethanol. According to above significant characteristics, Zr modified ZSM-5 will emerge as a promising catalyst for the conversion of bioethanol to propene.

Suggested Citation

  • Xia, Wei & Wang, Xue & Li, Shuangshuang & Jiang, Zhenhua & Chen, Kun & Liu, Dong, 2024. "Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033042
    DOI: 10.1016/j.energy.2023.129910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.