IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223033017.html
   My bibliography  Save this article

Effects of the WEC shape on the performance of a novel hybrid WEC-FOWT system

Author

Listed:
  • Wu, Haitao
  • Zhu, Fengshen
  • Yuan, Zhiming

Abstract

A novel wind-wave energy hybrid concept is presented in this paper, consists of a floating semi-submersible wind turbine and multiple point absorption wave energy converters (WECs). Numerical simulations are conducted using the hydrodynamic analysis program AQWA, based on the three-dimensional (3D) potential theory. To ensure the reliability of the numerical model, the hydrodynamic responses of the semi-submersible platform and the WECs are validated using available experimental data. Finally, three WECs with different shapes are designed to investigate the shape on the performance of this hybrid system, including platform motion, mooring line tension and power captured by the WECs. The results demonstrate that the hybrid system with the circular truncated conical WECs has the best performance compared to the other two shaped WECs. In addition, the influence of the platform motion on the performance of the WEC array is negative. Overall, this study could provide some insights for the design of other wind-wave integrated systems.

Suggested Citation

  • Wu, Haitao & Zhu, Fengshen & Yuan, Zhiming, 2024. "Effects of the WEC shape on the performance of a novel hybrid WEC-FOWT system," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033017
    DOI: 10.1016/j.energy.2023.129907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.