IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032929.html
   My bibliography  Save this article

Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis

Author

Listed:
  • Wang, Jianzhou
  • Yu, Yue
  • Zeng, Bo
  • Lu, Haiyan

Abstract

The rapid development of the photovoltaic industry provides a new source of power for the continued operation of the over-consumed energy world. While providing new opportunities for global energy systems, it also poses challenges for power grids. Therefore, it is a priority to fully grasp the characteristics of photovoltaic changes and accurately forecast and analyze them. To enrich the existing research, a novel hybrid prediction system considering meteorological factors is constructed. First, a feature selection module is introduced to select features and assign weights to exogenous meteorological factors, which breaks through the limitations of single-data dimension prediction. Second, shallow and deep learning models are flexibly applied and multi-objective intelligent optimization strategies are introduced to construct deterministic combinatorial prediction models. The module can effectively increase the diversity of prediction models while fully weighing the accuracy and stability of prediction to meet the needs of different information users. Finally, an interval prediction model is constructed to further enrich the PV power prediction system from the perspective of uncertainty analysis. The empirical study is carried out with 5-minute interval data at three sites, and the results show that the hybrid system obtains superior out-of-sample forecasting performance with technical feasibility and general applicability.

Suggested Citation

  • Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032929
    DOI: 10.1016/j.energy.2023.129898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.