IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032863.html
   My bibliography  Save this article

Numerical research on liquid water removal mechanism and the influence of pore structure on water removal rate based on real pore GDL structure during shutdown purge of fuel cell

Author

Listed:
  • shi, Lei
  • Tang, Xingwang
  • Xu, Sichuan
  • Liu, Ze

Abstract

This paper establishes a two-phase flow model of the real pore structure to explore the liquid water removal process during the shutdown purge. The Monte Carlo algorithm is used to randomly throw circles in the rectangular region to simulate the two-dimensional interface of the real GDL pore structures. The real pore structure with different porosity is established by change the number of random circles to explore the influence of porosity on the liquid water removal process. A solid mechanical model is established to explore the variation of GDL under the effect of assembly force. The equivalent model of the compressed real pore GDL is established to explore the effect of the assembly force on the removal of liquid water during the shutdown purge stage. The results show that the liquid water under the ribs is difficult to remove during the removal of liquid water, affecting the speed of liquid water removal. The reduction of GDL porosity is conducive to the diffusion of air and the displacement of liquid water, thus improving the removal speed of liquid water. The assembly force can reduce the porosity below the rib, and effectively promote the removal speed of liquid water below the rib.

Suggested Citation

  • shi, Lei & Tang, Xingwang & Xu, Sichuan & Liu, Ze, 2024. "Numerical research on liquid water removal mechanism and the influence of pore structure on water removal rate based on real pore GDL structure during shutdown purge of fuel cell," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032863
    DOI: 10.1016/j.energy.2023.129892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.