IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032565.html
   My bibliography  Save this article

Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine

Author

Listed:
  • Jamei, Mehdi
  • Sharma, Prabhakar
  • Ali, Mumtaz
  • Bora, Bhaskor J.
  • Malik, Anurag
  • Paramasivam, Prabhu
  • Farooque, Aitazaz A.
  • Abdulla, Shahab

Abstract

Biogas has developed as a potential substitute fuel source due to its renewable and sustainable nature, which can help reduce greenhouse gas emissions. In this paper, along with the experimental investigation, a novel interpretable expert system was constructed to address these issues and provide meaningful explanations for model predictions using extreme gradient boosting (XGB). For this purpose, the SHapley Additive exPlanations (SHAP) tool was coupled with XGB open-source algorithm to simulate five efficiency parameters of the biogas-powered engines, including brake thermal efficiency (BTE), peak pressure (PP), hydrocarbon (HC), oxides of nitrogen (NOx), and carbon monoxide (CO). Here, four experimental-based variables comprised of fuel injection timing, fuel injection pressure, compression ratio, and engine load were employed as predictors. Apart from the main framework, two advanced ensemble machine learning (ML), namely the light gradient-boosting machine (LightGBM) and Extra Tree algorithms, were adopted to validate the primary model. In addition, we use the SHAP framework to understand the impact of input features on engine performance and emission outputs. XGB-SHAP owing to its best predictive performance (BTE|R = 0.994 and RMSE = 0.567, PP|R = 0.984 and RMSE = 0.846, HC|R = 0.994 and RMSE = 6.215, NOx|R = 0.998 and RMSE = 1.407, and CO|R = 0.985 and RMSE = 3.464) outperformed the Extra Tree and LightGBM, respectively.

Suggested Citation

  • Jamei, Mehdi & Sharma, Prabhakar & Ali, Mumtaz & Bora, Bhaskor J. & Malik, Anurag & Paramasivam, Prabhu & Farooque, Aitazaz A. & Abdulla, Shahab, 2024. "Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032565
    DOI: 10.1016/j.energy.2023.129862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.