IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032541.html
   My bibliography  Save this article

Passive cooling of photovoltaic panels with latent heat storage unit: Analyzing the effects of using fins and iron nanoparticles on the performance, economy and environmental impact

Author

Listed:
  • Tuncer, Azim Doğuş
  • Gürbüz, Emine Yağız
  • Şahinkesen, İstemihan
  • Georgiev, Aleksandar
  • Keçebaş, Ali

Abstract

This study investigates the effect of using a latent heat storage unit (LHSU) equipped with fins and nanoparticles (NAPs) on the performance of a photovoltaic (PV) system. Various PV systems were assessed for their economic viability and environmental impact. Initially, three different PV systems were designed and analyzed: a conventional PV, a PV with a paraffin-containing LHSU, and a PV with LHSU integrating 3 fins and paraffin. Results from the first set of experiments indicated that the fin-integrated system delivered the best performance. In the second phase, the most effective system from the initial stage (PV with 3 fins-added LHSU) was compared to systems with 6 fins-integrated LHSU and LHSUs integrating 6 fins and iron (Fe) NAPs. The stage specifically examined the effects of doubling the number of fins and adding NAPs to the paraffin on performance. It was found that increasing the number of fins resulted in a levelized cost of electricity (LCOE) of 0.69 USD/kWh. The electrical (module) efficiency of the system incorporating 6 fins and NAPs improved by 15.51 % compared to the conventional system. Moreover, the surface temperature of the PV panel was reduced by 7.28–17.93 % using these modifications. Performance ratio values for the five different analyzed PV systems ranged between 0.597 and 0.689. From an environmental perspective, integrating aluminum into PV systems lead to a total environmental impact of 4.73 Pt/h and an environmental impact of electricity produced (EIE) of 0.90 mPts/kWh. However, introduction of NAPs significantly increased these values to 17.76 Pt/h and 3.09 mPts/kWh, respectively. This study highlights the potential of the proposed passive cooling technique for enhancing PV system efficiency while also pointing out the necessity for design improvements to optimize economic and environmental impacts.

Suggested Citation

  • Tuncer, Azim Doğuş & Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Georgiev, Aleksandar & Keçebaş, Ali, 2024. "Passive cooling of photovoltaic panels with latent heat storage unit: Analyzing the effects of using fins and iron nanoparticles on the performance, economy and environmental impact," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032541
    DOI: 10.1016/j.energy.2023.129860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.