IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032516.html
   My bibliography  Save this article

Spontaneous combustion properties and quantitative characterization of catastrophic temperature for pre-oxidized broken coal under stress

Author

Listed:
  • Xu, Yong-liang
  • Huo, Xing-wang
  • Wang, Lan-yun
  • Gong, Xiang-jun
  • Lv, Ze-cheng
  • Zhao, Tian

Abstract

Coal Spontaneous Combustion (CSC) is one of the most important natural disasters in coal mining safety production. To deeply restore the real state of CSC left in goaf during the face mining of coal mines, the experiments are carried out to simulate the oxidation characteristics of coal left in goaf under the coupling of the stresses (0 MPa, 4 MPa, 8 MPa) and the pre-oxidation temperatures (25 °C, 70 °C, 120 °C, 180 °C) employing the load-pressure-based device equipped with temperature-programmed. The oxidation characteristic parameter of CO gas generation, the O2 consumption rate, the apparent activation energy (Ea), and the critical temperature(T1) are calculated. It is found that both the pre-oxidation temperature and the stress have a promotion range for coal spontaneous combustion, and although they inhibited each other beyond the promotion range, they still show a promotion result. The pre-oxidation temperature and stress mainly affect the content of oxygen-containing functional groups and the permeability, thus influencing the process of coal spontaneous combustion. Based on the engineering application, a cusp catastrophe model is established to predict the catastrophic temperature of coal spontaneous combustion, and it is verified that the catastrophic temperature could correctly characterize the transition of coal spontaneous combustion, and it is found that the catastrophic temperature lagged behind the critical temperature, which provides sufficient time and space for the prevention and control of coal spontaneous combustion.

Suggested Citation

  • Xu, Yong-liang & Huo, Xing-wang & Wang, Lan-yun & Gong, Xiang-jun & Lv, Ze-cheng & Zhao, Tian, 2024. "Spontaneous combustion properties and quantitative characterization of catastrophic temperature for pre-oxidized broken coal under stress," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032516
    DOI: 10.1016/j.energy.2023.129857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.