IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032450.html
   My bibliography  Save this article

Fates of pyrolysis oil components in the non-isothermal propped fractures during oil shale in situ pyrolysis exploitation

Author

Listed:
  • Guo, Wei
  • Fan, Cunhan
  • Liu, Zhao
  • Zhang, Xu
  • Sun, Youhong
  • Li, Qiang

Abstract

In situ pyrolysis by heating the reservoir is an effective method to convert oil shale resources to liquid oil. However, in the in situ non-isothermal reservoir during artificial heating, pyrolysis oil components experience extremely complex processes from generation to recovery, including phase transition, component separation, migration, secondary cracking, etc. These processes determine the in situ pyrolysis exploitation efficiency. In this study, pore-scale experiments of distribution, migration, and recovery were performed in a non-isothermal propped fracture. Results showed that pyrolysis oil flowed in a mixed state of multi-components through continuous oil channels below 260 °C, and the continuous oil channels narrowed with the improvement of temperature; while the separation of the light and heavy components occurred at higher temperatures. The fates and recovery mechanism of pyrolysis oil components were revealed under different temperatures, results indicated that the distribution and migration characteristics contributed to the lightness of the produced oil, and might induce the blockage of the in situ reservoir. The obtained results can provide preferences for predicting and adjusting the status of in situ pyrolysis exploitation.

Suggested Citation

  • Guo, Wei & Fan, Cunhan & Liu, Zhao & Zhang, Xu & Sun, Youhong & Li, Qiang, 2024. "Fates of pyrolysis oil components in the non-isothermal propped fractures during oil shale in situ pyrolysis exploitation," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032450
    DOI: 10.1016/j.energy.2023.129851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.