IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032322.html
   My bibliography  Save this article

Effect of sand production on physical properties and fracturing development of gas hydrate reservoir

Author

Listed:
  • Hao, Yongmao
  • Wang, Chuanming
  • Tao, Shuai
  • Sun, Yongquan
  • Liu, Ran
  • Liang, Jikai

Abstract

Offshore gas hydrates are being focused on as an unconventional energy source. The susceptibility of marine hydrate reservoirs to sand emergence makes them unsuitable for long-term exploitation. This research delves into the particle-transport law in hydrate reservoirs, revealing that sand blockage hinders long-term exploitation, and proposes a reservoir modification strategy to establish high-permeability channels, thereby enhancing production. After 110 days of mining, the range of porosity and permeability below the initial value was approximately 8.5 m. The study further optimizes reservoir modification parameters under sand blockage, suggesting that a balance between fracture and reservoir blockage can be achieved with a fracture half-length of 20 m, leading to increased production. It also highlights that the slow decomposition of blocked hydrate and the accumulation of decomposed methane gas in the upper part of the reservoir can be leveraged to increase production by providing a high permeability channel for free gas, concluding that maintaining long-term high permeability is crucial for hydrate reservoir fractures.

Suggested Citation

  • Hao, Yongmao & Wang, Chuanming & Tao, Shuai & Sun, Yongquan & Liu, Ran & Liang, Jikai, 2024. "Effect of sand production on physical properties and fracturing development of gas hydrate reservoir," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032322
    DOI: 10.1016/j.energy.2023.129838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.