IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032097.html
   My bibliography  Save this article

Adsorption effects on CO2-oil minimum miscibility pressure in tight reservoirs

Author

Listed:
  • Wang, Zengding
  • Liu, Tengyu
  • Liu, Shanchao
  • Jia, Cunqi
  • Yao, Jun
  • Sun, Hai
  • Yang, Yongfei
  • Zhang, Lei
  • Delshad, Mojdeh
  • Sepehrnoori, Kamy
  • Zhong, Junjie

Abstract

CO2 miscible injection holds immense potential for enhancing tight oil recovery, where achieving the minimum miscibility pressure (MMP) is pivotal. Adsorption of CO2 and oil in pores affects the CO2-oil MMP in tight reservoirs, necessitating precise nanoscale MMP calculations and understanding influencing factors. Here, we applied a modified Peng-Robinson equation of state (PR-EOS) for nanoscale MMP calculations, incorporating adsorption layers and effective molar volume to describe adsorption effects. Validation against molecular simulations and nanofluidic experiments shows a maximum deviation of 4.6 %. We found that in nanopores, achieving miscibility demands less CO2 than in bulk. The CO2-oil MMP reduces as pore size decreasing, influenced by adsorption, critical point shift and capillarity. At 5 nm, the MMP is 11.12 MPa, 27.8 % lower than the bulk value (15.4 MPa). Adsorption intensifies this reduction by curtailing free molecules and effective pore radius, and becomes more pronounced for lighter hydrocarbon mixtures. However, the nanoscale CO2-oil MMP is equal to the bulk value when rp ≥ 350 nm. Furthermore, a maximum MMP and the corresponding transition temperature exist for each pore size, and increase as pore size increasing. This method provides a valuable tool for optimizing CO2 miscible injection and carbon storage in challenging nanoscale-pore reservoirs.

Suggested Citation

  • Wang, Zengding & Liu, Tengyu & Liu, Shanchao & Jia, Cunqi & Yao, Jun & Sun, Hai & Yang, Yongfei & Zhang, Lei & Delshad, Mojdeh & Sepehrnoori, Kamy & Zhong, Junjie, 2024. "Adsorption effects on CO2-oil minimum miscibility pressure in tight reservoirs," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032097
    DOI: 10.1016/j.energy.2023.129815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.