IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031997.html
   My bibliography  Save this article

Correlation as a method to assess electricity users’ contributions to grid peak loads: A case study

Author

Listed:
  • Flygare, Carl
  • Wallberg, Alexander
  • Jonasson, Erik
  • Castellucci, Valeria
  • Waters, Rafael

Abstract

Flexibility has increasingly gained attention within the field of electrification and energy transition where a common objective is to reduce the electricity consumption peaks. However, flexibility can increase the risk of grid congestion depending on where and when and it is used, thus an overall system perspective needs to be considered to ensure an effective energy transition. This paper presents a framework to assess electricity users’ contributions to grid load peaks by splitting electricity consumption data into subsets based on time and temperature. The data in each subset is separately correlated with the grid load using three correlation measures to assess how the user’s consumption changes at the same time as typical grid peak loads occur. The framework is implemented on four different types of business activities at Uppsala municipality in Sweden, which is a large public entity, to explore their behaviors and assess their grid peak load contributions. The results of this study conclude that all four activities generally contribute to the grid peak loads, but that differences exist. These differences are not visible without splitting the data, and not doing so can lead to unrepresentative conclusions. The presented framework can identify activities that contribute the most to unfavorable grid peaks, providing a tool for decision-makers to enable an accelerated energy transition.

Suggested Citation

  • Flygare, Carl & Wallberg, Alexander & Jonasson, Erik & Castellucci, Valeria & Waters, Rafael, 2024. "Correlation as a method to assess electricity users’ contributions to grid peak loads: A case study," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031997
    DOI: 10.1016/j.energy.2023.129805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.