IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031948.html
   My bibliography  Save this article

Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks

Author

Listed:
  • Liu, Qian
  • Li, Wanjun
  • Zhao, Zhen
  • Jian, Gan

Abstract

"In the field of energy supply, coordinated multi-carrier systems, which include natural gas and electric energy, offer unique opportunities to enhance energy efficiency and flexibility. Nevertheless, the interdependence between electricity and natural gas networks poses various challenges related to the flow of electricity and gas in feeders, pipes, and connection points. To address these challenges, the concept of an energy hub emerges as an essential component in multi-carrier energy systems, serving as a connection point between the electricity grid and gas grids. This study introduces an optimal operation method for coordinating gas and electricity distribution networks through interconnected energy hubs. The infrastructure of the proposed energy hub comprises a combined heat and power unit, a boiler, an electric energy storage system, a heat pump, and a gas-burning unit, effectively meeting heating and electrical load requirements. The model formulation follows a stochastic approach based on a two-stage scenario. Considering uncertainties related to wind energy, electric load, and real-time energy prices, the primary objective of this study is to minimize the total operating cost of the energy system. The optimization problem is solved using Wall's optimization algorithm. To meet its energy requirements, the integrated energy system presented in this paper actively participates in the real and daily electric energy markets, as well as the natural gas market, providing the necessary energy resources. Additionally, the model incorporates realistic descriptions of electric power and gas flow in feeders and gas pipelines, considering AC load distribution and the Weymouth equation. With consideration of connectivity constraints, the proposed model offers a comprehensive representation of the integrated electricity and gas networks. The simulations conducted on the integrated energy system, comprising a 33-bus electric network and a 6-node gas network with interconnected energy hubs, highlight a remarkable 12 % decrease in electricity purchase costs and a substantial 18 % reduction in natural gas procurement expenses, underscoring the cost-efficiency and effectiveness of the stochastic planning approach.

Suggested Citation

  • Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031948
    DOI: 10.1016/j.energy.2023.129800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.