IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031754.html
   My bibliography  Save this article

Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion

Author

Listed:
  • Li, Yaqing
  • Ren, Xiaofang
  • Zhang, Yuanbo
  • Zhang, Yutao
  • Shi, Xueqiang
  • Ren, Shuaijing

Abstract

In the hope of exploring the effect of coal gangue left in goaf on coal spontaneous combustion, the variations of thermal effects and free radical parameters during coexisting spontaneous combustion of coal and coal gangue were tested, and kinetic at different heating stages were calculated. The following beneficial findings were obtained. For the mixed samples, the heat flow curve, ignition temperature, and free radical concentration all decline with the increase of coal gangue content, and the free radical parameters exhibit periodic changes with increasing temperature. Both the experimental value of thermal effect and free radical concentration with coal and coal gangue mixture during the spontaneous combustion process are higher than the calculated value. The calculation results of kinetic show that at the endothermic stage, the activation energies of the mixed samples decline with the increase of coal gangue, and the experimental value of activation energy is greater than the calculate value; at the exothermic stage, the case is exactly the opposite. Furthermore, due to the higher reactivity of coal gangue groups and stronger thermal conductivity, the coexistence of coal and coal gangue spontaneous combustion reaction is promoted. Resultantly, coal spontaneous combustion is normally more threatening in gangue-containing goafs.

Suggested Citation

  • Li, Yaqing & Ren, Xiaofang & Zhang, Yuanbo & Zhang, Yutao & Shi, Xueqiang & Ren, Shuaijing, 2024. "Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031754
    DOI: 10.1016/j.energy.2023.129781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.