IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031493.html
   My bibliography  Save this article

Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions

Author

Listed:
  • Fang, Bin
  • Lü, Tao
  • Li, Wei
  • Moultos, Othonas A.
  • Vlugt, Thijs J.H.
  • Ning, Fulong

Abstract

Knowledge on the kinetics of gas hydrate dissociation in clay pores at static and dynamic fluid conditions is a fundamental scientific issue for improving gas production efficiency from hydrate deposits using thermal stimulation and depressurization respectively. Here, molecular dynamics simulations were used to investigate poly- and mono-crystalline methane hydrates in Na-montmorillonite clay nanopores. Simulation results show that hydrate dissociation is highly sensitive to temperature and pressure gradients, but their effects differ. Temperature changes increase thermal instability of water and gas molecules, leading to layer-by-layer dissociation from the outer surface. Under flow conditions, laminar flow predominates in nano-pores, and non-Darcy flow occurs due to clay-fluid interactions. Viscous flow disrupts hydrogen bonding at the hydrate surface, enhancing kinetic instability of water. Grain boundaries of polycrystalline hydrates are less stable compared to bulk phases and preferentially decompose, forming new dissociation fronts. This accelerates dissociation compared to monocrystalline hydrates. Fracture occurs at the grain boundaries of polycrystalline hydrate in the fluid, resulting in separate hydrate crystal grains. This fracture process further accelerates hydrate dissociation. In flow systems, methane nanobubbles form in fluid and readily transport with fluid flow. Unlike surface nanobubbles at static conditions, these liquid nanobubbles exhibit mobility. The findings of this study can contribute to a better understanding of the complex phase transition behavior of hydrate in confined environment, and provide theoretical support for improving production control technology.

Suggested Citation

  • Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031493
    DOI: 10.1016/j.energy.2023.129755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.