IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics036054422303147x.html
   My bibliography  Save this article

High and low frequency wind power prediction based on Transformer and BiGRU-Attention

Author

Listed:
  • Wang, Shuangxin
  • Shi, Jiarong
  • Yang, Wei
  • Yin, Qingyan

Abstract

An accurate and reliable wind power prediction model has important significance for the operation of power systems and large-scale grid connection. This paper proposes a hybrid deep learning model, CEEMDAN-SE-TR-BiGRU-Attention, for high and low frequency wind power prediction by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE), Transformer (TR) and bidirectional gated recurrent unit with attention mechanism (BiGRU-Attention). Firstly, the CEEMDAN decomposes the original wind power sequence into multiple sub-modes and a residual, and the sample entropy of each sub-sequence is calculated by restructuring the sequence, which can effectively alleviate the impact of the original non-stationary series on the accuracy and computational complexity. Next, the reconstructed sequences are further divided into high and low frequency sequences according to the sample entropy value of the original sequence. The Transformer and BiGRU-Attention models are respectively applied to the prediction of high frequency and low frequency sequences according to the characteristics of each sequence. Finally, the predicted values of all components are superimposed to obtain the final prediction results. Experiments are carried out on four datasets with different seasons, and different models are compared to illustrate the effectiveness and superiority of the proposed model. The experimental results show that the proposed model achieves better prediction accuracy.

Suggested Citation

  • Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x
    DOI: 10.1016/j.energy.2023.129753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.