IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031468.html
   My bibliography  Save this article

Exponential sinusoidal modelling and parameterizing studies for the air temperature waves during underground tunnel ventilation

Author

Listed:
  • Guo, Jinnan
  • Li, Angui
  • Che, Jigang
  • Ma, Yuanqing
  • Li, Jiaxing
  • Yin, Yifei
  • Che, Lunfei

Abstract

Air precooling or preheating in underground tunnels is beneficial for reducing air conditioning energy consumption and has been widely used in underground spaces such as hydropower stations and utility tunnels. The fluctuation of the ambient temperature has a significant effect on the precooling and preheating performance of underground tunnels. To explore the fluctuation characteristics of the air temperature in an underground tunnel, field testing was conducted at a hydropower station and an exponential sinusoidal model based on the one-dimensional heat transfer differential equation was established. Comparative analysis has shown that the established model can effectively describe the field air temperature fluctuations in the tunnel. The research results reveal that the air temperature wave propagates along the underground tunnel with a period of 24 h, and the amplitude and average temperature continuously decay from 4.57 °C to 24.87 °C at the tunnel inlet to 0.51 °C and 22.95 °C at the tunnel outlet, respectively, with a delay time of approximately 3 h. Furthermore, the wavelength of the air temperature wave propagating along the underground traffic tunnel is approximately 7912 m, which is longer than the tunnel's actual length of 1000 m. Comparative analysis has verified that the exponential sinusoidal model established in this study has reliable predictive performance, which is beneficial for designing the ventilation and air conditioning system of underground spaces and the utilization strategy of surrounding rock natural energy.

Suggested Citation

  • Guo, Jinnan & Li, Angui & Che, Jigang & Ma, Yuanqing & Li, Jiaxing & Yin, Yifei & Che, Lunfei, 2024. "Exponential sinusoidal modelling and parameterizing studies for the air temperature waves during underground tunnel ventilation," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031468
    DOI: 10.1016/j.energy.2023.129752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.