IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031365.html
   My bibliography  Save this article

The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model

Author

Listed:
  • Chen, Haitao
  • Zhang, Bin
  • Liu, Hua
  • Cao, Jiguo

Abstract

This paper constructs a function-on-function linear model that identifies the unknown comprehensive response of household electricity consumption toward temperature changes from a data-driven perspective. We also analyze the contribution of dynamic temperature changes to electricity consumption inequality based on large-scale smart meter data. Specifically, we use the Gini index, which characterizes electricity consumption inequality, to explore the heterogeneity of household behaviors. The results show that extreme temperatures will significantly affect household electricity consumption, and the response inertia is approximately 48 days. The response inertia is mainly affected by the household electricity consumption scale. The inertia of large electricity users is four times that of small users. This response inertia difference leads to the occurrence of household electricity consumption inequity inequality in a relatively narrow time window of approximately 18 days. The results also reveal that extreme temperature fluctuations play a key role in enlarging this inequality.

Suggested Citation

  • Chen, Haitao & Zhang, Bin & Liu, Hua & Cao, Jiguo, 2024. "The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031365
    DOI: 10.1016/j.energy.2023.129742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.