IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031171.html
   My bibliography  Save this article

Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method

Author

Listed:
  • Aghabalazadeh, Mohammad
  • Neshat, Elaheh

Abstract

A novel trigeneration system of cooling, heating and power based on biomass is designed in current study. This system consists of five parts: biomass gasification subsystem, steam turbine subsystem (Rankin cycle), gas turbine subsystem (Brayton cycle), Kalina subsystem and ejector refrigeration subsystem. Energy, exergy and exergy-economic analysis were performed on the whole system and the effects of different key parameters on energy efficiency and exergy and economic factors are investigated. The designed cycle has been qualitatively optimized using DOE method and the interaction effects of parameters on cycle performance has been investigated. The results show that the highest exergy destruction is related to the combustion chamber with 56.14 %. Also, the lowest exergy destruction is assigned to the separator of the Kalina cycle with a nearly zero value. The highest investment, operating and maintenance costs are related to air compressor, gas turbine and steam generator, respectively. The results of parametric analysis showed that with increasing the mixing ratio of natural gas to syngas the thermal and exergy efficiencies, the rate of total system cost and the unit cost of power generation increase. Also, with increasing gasification temperature, the thermal and exergy efficiencies of this system vary slightly and can be considered constant, but the total cost of system increases. The results of DOE analysis showed that among the main effects of the parameters, the isentropic efficiency of the gas turbine and the temperature of the air entering the combustion chamber have the greatest effect on the system efficiency, and the GMR has the greatest effect on the LCOE of the system, and among the interaction effects of the parameters, the interaction between the temperature of the air entering the combustion chamber has the greatest effect on the system efficiency and LCOE.

Suggested Citation

  • Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031171
    DOI: 10.1016/j.energy.2023.129723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.