IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031109.html
   My bibliography  Save this article

Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations

Author

Listed:
  • Lai, Wenzhe
  • Zhen, Zhao
  • Wang, Fei
  • Fu, Wenjie
  • Wang, Junlong
  • Zhang, Xudong
  • Ren, Hui

Abstract

Accurate regional distributed PV power forecasting provides data support for power grid management and optimal operation. Distributed PV has the characteristics of large quantity, small capacity and difficulty in obtaining meteorological data. Statistical upscaling method is commonly used to forecast regional power. However, the current research ignores how to reasonably divide the sub-regions with similar output characteristics and mine the spatial and temporal correlation between different sub-regions. Therefore, this paper proposes a short-term regional distributed PV power forecasting method based on sub-region division considering spatio-temporal correlation. Firstly, the representative power plant is selected after dividing the sub-region by the AP clustering algorithm. Then, the GCN is used to extract spatial correlation features, and the LSTM is used to extract the evolution features of dynamic spatial correlation features, and the power forecasting models of representative plants in different weather types are established. Finally, the data integrity and similarity of the sub-region are scored, and the upscaling weight is determined to realize the power forecasting of the whole region. The distributed PV power generation data of Pingshan County, Hebei Province, China is used for simulation test. The results show that the forecasting method proposed has higher forecasting accuracy than the traditional model.

Suggested Citation

  • Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031109
    DOI: 10.1016/j.energy.2023.129716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.