IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031031.html
   My bibliography  Save this article

Evolution and oxidation properties of the functional groups of coals after water immersion and air drying

Author

Listed:
  • Zhang, Leilin
  • Wen, Chenchen
  • Li, Shengli
  • Yang, Mengdan

Abstract

The evolution of functional groups, the gas generation laws in oxidation and temperature increase, and the oxidation kinetics parameters of the coal samples immersed in water for 30 days, 90 days, and 150 days (hereinafter referred to as 30 d coal, 90 d coal, and 150 d coal, respectively) were analyzed through Fourier transform infrared spectrometer, programmed temperature increase test system, and thermal gravimetric analyzer to disclose spontaneous combustion and the influencing mechanism of long-flame coals immersed in water for a long period. Results show that the aliphatic hydrocarbon and the hydroxyl contents of the coal samples increase after water immersion and air drying. In particular, the aliphatic hydrocarbon contents in 30 d coal, 90 d coal, and 150 d coal increase from 12.61 % for raw coal to 15.84 %, 14.08 %, and 13.90 %, respectively, whereas the hydroxyl content increases from 48.75 % for raw coal to 50.77 %, 50.13 %, and 49.23 %, respectively. In the low-temperature oxidation process, the CO output increases, and the apparent activation energy declines. When the temperature is 200 °C, the CO outputs of 30 d coal, 90 d coal, and 150 d coal are 28088, 25421, and 22112 ppm, which are 37.4 %, 24.4 %, and 8.2 % higher than the CO output of raw coal (20437 ppm), respectively. The apparent activation energy decreases from 65.7 kJ mol−1 for raw coal to 61.12 kJ mol−1, 63.08 kJ mol−1, and 64.5 kJ mol−1. According to the comparison of characteristic temperature points, the temperature of the mass extreme (T3) and the temperature of ignition point (T4) of the immersed coal samples both decrease. The T3 values of 30 d coal, 90 d coal, and 150 d coal decrease from 282.71 °C for raw coal to 274.87, 278.33, and 280.50 °C, whereas their T4 values decrease from 424.24 °C for raw coal to 419.23, 420.14, and 423.42 °C, respectively. This study proves that water immersion increases the oxidative activity of coals, thereby simplifying spontaneous combustion.

Suggested Citation

  • Zhang, Leilin & Wen, Chenchen & Li, Shengli & Yang, Mengdan, 2024. "Evolution and oxidation properties of the functional groups of coals after water immersion and air drying," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031031
    DOI: 10.1016/j.energy.2023.129709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.