IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics036054422303092x.html
   My bibliography  Save this article

Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders

Author

Listed:
  • Siavashi, Javad
  • Mahdaviara, Mehdi
  • Shojaei, Mohammad Javad
  • Sharifi, Mohammad
  • Blunt, Martin J.

Abstract

This study improves the characterization of in situ contact angles in porous media by employing deep learning techniques (SegNet, UNet, ResNet, and UResNet) for multiphase segmentation of micro-CT images. The algorithms were tested on high-resolution X-ray images of a steady-state flow experiment where two fluid phases were simultaneously injected at different fractional flows. The models were trained to segment the images into solid, aqueous phase, and non-aqueous phase liquid (NAPL). The UResNet demonstrated the best performance with an f1-score of 0.966 for the test dataset. More importantly, the UResNet offered higher reliability than the watershed algorithm for various fractional flows based on visual inspection and phase distribution analysis. The porosity calculation error of the watershed method (7.8 %) was reduced to 5.1 % by UResNet. Furthermore, UResNet accurately depicted the consistently mixed-wet condition of the rock sample throughout the experiment, in contrast to the watershed segmentation that yielded inconsistencies in contact angle calculations at an aqueous phase fractional flow of 0.01.

Suggested Citation

  • Siavashi, Javad & Mahdaviara, Mehdi & Shojaei, Mohammad Javad & Sharifi, Mohammad & Blunt, Martin J., 2024. "Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303092x
    DOI: 10.1016/j.energy.2023.129698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303092X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303092x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.