IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030918.html
   My bibliography  Save this article

Thermal spallation of dry rocks induced by flame parallel or normal to layering: Effect of anisotropy

Author

Listed:
  • Guo, Yide
  • Dyskin, Arcady
  • Pasternak, Elena

Abstract

Thermal spallation drilling is a prospective technique in many strategic projects involving energy. To investigate the effect of rock anisotropy on thermal spallation and provide reference for thermal rock-drilling methods, we conducted flame jet experiments on dry shale samples and finite element modelling. Thermal spallation is produced by the growth of pre-existed cracks under compressive thermal stress. These cracks separate thin layers from the bulk of the rock; the layers buckle under compressive stress producing the spalls. Simultaneously, tensile fractures are formed that can inhibit the thermal spallation process. Rock anisotropy can change the thermal spallation zone making it larger (over seven times) or smaller compared to the isotropic case, or even exclude spallation. Comparison with experimentally observed spallation zone in shale samples with different bedding orientations suggests that bedding planes do not induce anisotropy sufficient to affect thermal spallation. Strong anisotropy of rocks can generate thermal tensile fractures directly from the heating surface, the situation impossible in isotropic rocks. During progressive thermal spallation rock anisotropy can make the spallation zone larger or remain unchanged. The results can help understanding thermal spallation of rocks and are instrumental in designing thermal spallation-based drilling technique for strongly anisotropic rocks.

Suggested Citation

  • Guo, Yide & Dyskin, Arcady & Pasternak, Elena, 2024. "Thermal spallation of dry rocks induced by flame parallel or normal to layering: Effect of anisotropy," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030918
    DOI: 10.1016/j.energy.2023.129697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.