IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics036054422303089x.html
   My bibliography  Save this article

Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine

Author

Listed:
  • Sathish Kumar, T.
  • Ashok, B.

Abstract

The current study proposes a model-based calibration strategy for developing an optimum combustion control map in furtherance of flex-fuel operation with methanol-gasoline blends. Furthermore, a model is developed through the response surface methodology (RSM) for the engine parameters and responses based on the experimental results. In addition, a multi-objective optimization is enacted that relies on a desirability approach keeping equal attention to engine performance and exhaust emission characteristics. The established RSM model exhibits a reliable prediction ability across the operating realms of the engine. Thereby, it has been explored the tendency of parameter calibration and its effects on the engine responses for gasoline and methanol-gasoline blends are studied. From the optimally calibrated map, the test fuel of M30 shows the highest value of brake thermal efficiency (BTE) of 30.76 % and the lowest level of brake specific fuel consumption (BSFC) is recorded for M0 about 147 g/kWh. Besides, the maximal value of 1.70 %vol, 13.96 %vol, 268 ppm, and 535 ppm is observed in the engine exhaust for carbon monoxide (CO), carbon dioxide (CO2), hydrocarbon (HC), and nitrogen oxides (NOx) respectively despite of fuel used. Moreover, the validation results assure and reveal identical outcomes with predicted values within the allowable errors.

Suggested Citation

  • Sathish Kumar, T. & Ashok, B., 2024. "Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303089x
    DOI: 10.1016/j.energy.2023.129695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303089X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303089x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.