IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030682.html
   My bibliography  Save this article

Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage

Author

Listed:
  • Yu, Shuai
  • Yan, Xingqing
  • He, Yifan
  • Yu, Jianliang
  • Chen, Shaoyun

Abstract

In the CCUS technology chain, buried CO2 pipelines are inevitable under special terrain conditions. Due to the concealment and the complexity of the soil, they have a higher possibility of leakage. However, there is limited research on buried CO2 pipeline leakage processes. In this study, authors used existing industrial-scale pipelines as CO2 storage containers and constructed a large-scale buried CO2 pipeline experimental system. The leakage hole size and direction were considered to investigate the leakage morphology and temperature changes in the soil. The results showed that during the small-hole leakage, dry ice spheres were formed, which adhered to the pipeline. According to the change of temperature field, the dry ice spheres expanded towards weak areas in the soil, rather than strictly along the jet direction. The volume of dry ice spheres generated in the upward leakage process was the largest, while the volume was the smallest in the downward leakage process. Due to the soil resistance, the volume of dry ice spheres generated in the 3 mm leakage process was always greater than 9 times that of the 1 mm leakage process. The experimental results provide important references for optimizing leakage detection systems and conducting leakage risk assessments.

Suggested Citation

  • Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030682
    DOI: 10.1016/j.energy.2023.129674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    CCUS; CO2 leakage; Buried pipeline; Dry ice; Temperature;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.