IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics036054422303061x.html
   My bibliography  Save this article

Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization

Author

Listed:
  • Wang, Bing-Chuan
  • He, Yan-Bo
  • Liu, Jiao
  • Luo, Biao

Abstract

Lithium-ion batteries encompass a comprehensive set of parameters crucial for constructing an efficient battery management system. Utilizing parameter identification assisted by the pseudo-two-dimensional (P2D) model is far more cost-effective than employing direct measurement methods. Nonetheless, the time-consuming simulations associated with the P2D model can significantly hamper the efficiency of a parameter identification algorithm. This situation would be even worse when encountering inappropriate parameter vectors, which can cause the P2D model to fail to converge, consequently leading to further computational time consumption. To address these two issues, this paper proposes a classification model-assisted Bayesian optimization (CMABO) framework for parameter identification of lithium-ion batteries. In CMABO, Bayesian optimization is employed to search for optimal parameters. Its inherent capability to leverage the complete information conveyed by historical data renders Bayesian optimization sample-efficient, thereby enhancing the efficiency of the identification process. Additionally, a classification model is established to discern parameter vectors that could lead to unsuccessful simulations of the P2D model. This additional step of classification enhances the efficiency even further. CMABO is the first attempt to consider the failed simulations of an electrochemical model when identifying parameters. Simulations and experiments show that it is more accurate and efficient than some electrochemical model-based methods including genetic algorithm (GA), particle swarm optimization (PSO), and SA-TLBO. Besides, among different acquisition functions for Bayesian optimization, the lower confidence bound reveals the best performance.

Suggested Citation

  • Wang, Bing-Chuan & He, Yan-Bo & Liu, Jiao & Luo, Biao, 2024. "Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303061x
    DOI: 10.1016/j.energy.2023.129667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303061X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303061x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.