IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030153.html
   My bibliography  Save this article

Experimental study on combustion, performance, and emission characteristics of a homogeneous charge compression ignition engine fuelled with multiple biofuel-gasoline blends

Author

Listed:
  • Kale, Aneesh Vijay
  • Krishnasamy, Anand

Abstract

For sustainable future mobility and power generation applications, there is a compelling need to develop flex-fuel engines that operate with multiple regional or season-specific biofuels. The present investigation focussed on mitigating agricultural diesel engines’ pollutant emission and performance problems. A systematic experimental study is carried out in a modified agricultural diesel engine to compare and evaluate the engine characteristics of the biofuel-gasoline blends fuelled Homogeneous Charge Compression Ignition (HCCI) mode. Seven different oxygenated biofuels: acetone, ethanol, methanol, isopropanol, isobutanol, ethyl acetate, and diisopropyl ether blended in gasoline, were investigated. 2-Ethylhexyl nitrate was used to improve the reactivity of fuel blends to the extent that lower engine loads could be reached. All the investigated biofuel-gasoline blends could produce permissible emission levels by suitably tuning the fuel proportions. The total nitrogen oxides and smoke emissions were below 2.8 and 0.0007 g/kWh, respectively, for all the investigated biofuel-gasoline blends at all the HCCI engine load conditions. The highest indicated thermal efficiency of 42% was attained using 60% ethanol/34% gasoline/6% 2-EHN blend in the HCCI engine at 4.63 bar BMEP (86% rated load), a notable 25% improvement compared to the conventional diesel engine. A detailed investigation was done to elucidate the HCCI engine performance (indicated thermal efficiency) trend variations with biofuel type and engine load. The Response Surface Method was adopted to correlate the maximum and the minimum engine load with the fuel composition and properties. The Desirability Approach provided the optimum fuel composition and properties to maximize the engine load range. The optimum solution achieved the engine load range of 20%–89% rated load. Overall, a compact, efficient, and clean HCCI combustion-based engine technology was developed that could be operated using multiple biofuels over an expanded load range.

Suggested Citation

  • Kale, Aneesh Vijay & Krishnasamy, Anand, 2024. "Experimental study on combustion, performance, and emission characteristics of a homogeneous charge compression ignition engine fuelled with multiple biofuel-gasoline blends," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030153
    DOI: 10.1016/j.energy.2023.129621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.